No relevant resource is found in the selected language.

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Read our privacy policy>Search

Reminder

To have a better experience, please upgrade your IE browser.

upgrade

Configuration Guide - VPN

S7700 and S9700 V200R013C00

This document describes the configurations of VPN, including GRE, IPSec, BGP/MPLS IP VPN, BGP/MPLS IPv6 VPN, VLL, PWE3, VPLS, L2VPN Access to L3VPN.
Rate and give feedback:
Huawei uses machine translation combined with human proofreading to translate this document to different languages in order to help you better understand the content of this document. Note: Even the most advanced machine translation cannot match the quality of professional translators. Huawei shall not bear any responsibility for translation accuracy and it is recommended that you refer to the English document (a link for which has been provided).
Example for Configuring Hub and Spoke (Using a Default Route Between Hub-PE and Hub-CE)

Example for Configuring Hub and Spoke (Using a Default Route Between Hub-PE and Hub-CE)

Networking Requirements

As shown in Figure 4-6, the communication between Spoke-CEs is controlled by the Hub-CE in the central site. That is, the traffic between Spoke-CEs is forwarded by the Hub-CE, and not only by the Hub-PE. You need to configure a default route between the Hub-PE and Hub-CE.

NOTE:

In this scenario, to avoid loops, ensure that all connected interfaces have STP disabled and connected interfaces are removed from VLAN 1. If STP is enabled and VLANIF interfaces of switches are used to construct a Layer 3 ring network, an interface on the network will be blocked. As a result, Layer 3 services on the network cannot run normally.

Figure 4-6  Networking diagram for configuring Hub and Spoke

Configuration Roadmap

The configuration roadmap is as follows:

  1. Establish tunnels and IBGP peer relationships between the Hub-PE and the Spoke-PEs. The Spoke-PEs do not establish an IBGP peer relationship or exchange VPN routing information.

  2. Create two IPv6 VPN instances, namely, vpn_in and vpn_out, on the Hub-PE. The VPN target received by vpn_in is the same as the VPN target advertised by the Spoke-PEs. The VPN target advertised by vpn_out is different from the VPN target received by vpn_out, but is the same as the VPN target received by the Spoke-PEs.

  3. Create an IPv6 VPN instance on each Spoke-PE. The VPN target received by the IPv6 VPN instance is the same as the VPN target advertised by vpn_out, and the VPN target advertised by the IPv6 VPN instance is the same as the VPN target received by vpn_in.

  4. Configure the default route as follows:

    • Configure the IPv6 default route on the Hub-CE. Set the next hop of the route to the IPv6 address of the Hub-PE's interface bound to vpn_in.

    • Configure the default route for vpn_out on the Hub-PE. Set the next hop of the default route to the address of the Hub-CE.

    • In the BGP VPN instance address family view of vpn_out on the Hub-PE, run the network :: 0 command to advertise the default route to all Spoke sites.

  5. Configure BGP4+ between the Spoke-PEs and Spoke-CEs.

Procedure

  1. Configure an IGP protocol on the backbone network to enable the Hub-PE and Spoke-PEs to communicate with each other.

    In this example, OSPF and Spoke-PE1 are used as examples.

    # Configure Spoke-PE1.

    <HUAWEI> system-view
    [HUAWEI] sysname Spoke-PE1
    [Spoke-PE1] ospf 1
    [Spoke-PE1-ospf-1] area 0
    [Spoke-PE1-ospf-1-area-0.0.0.0] network 22.1.1.0 0.0.0.255
    [Spoke-PE1-ospf-1-area-0.0.0.0] network 1.1.1.9 0.0.0.0
    [Spoke-PE1-ospf-1-area-0.0.0.0] quit
    [Spoke-PE1-ospf-1] quit

    The configuration on the Hub-PE and Spoke-PE2 is similar to the configuration on Spoke-PE1 and is not mentioned here.

    After the configuration is complete, an OSPF neighbor relationship is established between the PEs. Run the display ospf peer command, and you can see that the neighbor status is Full. Run the display ip routing-table command on the PEs. The command output shows that the PEs have learned the route to the loopback interface of each other.

  2. Configure basic MPLS capabilities and MPLS LDP on the backbone network to establish LDP LSPs.

    # Configure the Hub-PE.

    [Hub-PE] mpls lsr-id 2.2.2.9
    [Hub-PE] mpls
    [Hub-PE-mpls] quit
    [Hub-PE] mpls ldp
    [Hub-PE-mpls-ldp] quit
    [Hub-PE] interface vlanif 10
    [Hub-PE-Vlanif10] mpls
    [Hub-PE-Vlanif10] mpls ldp
    [Hub-PE-Vlanif10] quit
    [Hub-PE] interface vlanif 20
    [Hub-PE-Vlanif20] mpls
    [Hub-PE-Vlanif20] mpls ldp
    [Hub-PE-Vlanif20] quit

    # The configuration on Spoke-PEs is similar to the configuration on the Hub-PE and is not mentioned here.

    After the configuration is complete, LDP peer relationships are established between the Hub-PE and Spoke-PEs. Run the display mpls ldp session command on each device, and you can see that the status is Operational.

  3. Configure IPv6 VPN instances on PEs and bind the interfaces connected to CEs to the VPN instances.

    NOTE:

    The VPN targets of the two IPv6 VPN instances on the Hub-PE are the VPN targets advertised by the two Spoke-PEs, and the advertised VPN target is different from the received VPN target.

    Configure IPv6 VPN instances on Spoke-PEs. The import VPN target on the Spoke-PEs is the VPN target advertised by the Hub-PE.

    # Configure Spoke-PE1.

    [Spoke-PE1] ip vpn-instance vpna
    [Spoke-PE1-vpn-instance-vpna] ipv6-family
    [Spoke-PE1-vpn-instance-vpna-af-ipv6] route-distinguisher 100:1
    [Spoke-PE1-vpn-instance-vpna-af-ipv6] vpn-target 100:1 export-extcommunity
    [Spoke-PE1-vpn-instance-vpna-af-ipv6] vpn-target 200:1 import-extcommunity
    [Spoke-PE1-vpn-instance-vpna-af-ipv6] quit
    [Spoke-PE1-vpn-instance-vpna] quit
    [Spoke-PE1] interface vlanif 50
    [Spoke-PE1-Vlanif50] ipv6 enable
    [Spoke-PE1-Vlanif50] ip binding vpn-instance vpna
    [Spoke-PE1-Vlanif50] ipv6 address 2001::2 64
    [Spoke-PE1-Vlanif50] quit

    #Configure Spoke-PE2.

    [Spoke-PE2] ip vpn-instance vpna
    [Spoke-PE2-vpn-instance-vpna] ipv6-family
    [Spoke-PE2-vpn-instance-vpna-af-ipv6] route-distinguisher 100:3
    [Spoke-PE2-vpn-instance-vpna-af-ipv6] vpn-target 100:1 export-extcommunity
    [Spoke-PE2-vpn-instance-vpna-af-ipv6] vpn-target 200:1 import-extcommunity
    [Spoke-PE2-vpn-instance-vpna-af-ipv6] quit
    [Spoke-PE2-vpn-instance-vpna] quit
    [Spoke-PE2] interface vlanif 60
    [Spoke-PE2-Vlanif60] ipv6 enable
    [Spoke-PE2-Vlanif60] ip binding vpn-instance vpna
    [Spoke-PE2-Vlanif60] ipv6 address 2002::2 64
    [Spoke-PE2-Vlanif60] quit

    # Configure the Hub-PE.

    [Hub-PE] ip vpn-instance vpn_in
    [Hub-PE-vpn-instance-vpn_in] ipv6-family
    [Hub-PE-vpn-instance-vpn_in-af-ipv6] route-distinguisher 100:21
    [Hub-PE-vpn-instance-vpn_in-af-ipv6] vpn-target 100:1 import-extcommunity
    [Hub-PE-vpn-instance-vpn_in-af-ipv6] quit
    [Hub-PE-vpn-instance-vpn_in] quit
    [Hub-PE] ip vpn-instance vpn_out
    [Hub-PE-vpn-instance-vpn_out] ipv6-family
    [Hub-PE-vpn-instance-vpn_out-af-ipv6] route-distinguisher 100:22
    [Hub-PE-vpn-instance-vpn_out-af-ipv6] vpn-target 200:1 export-extcommunity
    [Hub-PE-vpn-instance-vpn_out-af-ipv6] quit
    [Hub-PE-vpn-instance-vpn_out] quit
    [Hub-PE] interface vlanif 30
    [Hub-PE-Vlanif30] ipv6 enable
    [Hub-PE-Vlanif30] ip binding vpn-instance vpn_in
    [Hub-PE-Vlanif30] ipv6 address 2003::2 64
    [Hub-PE-Vlanif30] quit
    [Hub-PE] interface vlanif 40
    [Hub-PE-Vlanif40] ipv6 enable
    [Hub-PE-Vlanif40] ip binding vpn-instance vpn_out
    [Hub-PE-Vlanif40] ipv6 address 2004::2 64
    [Hub-PE-Vlanif40] quit

    # Assign IPv6 addresses to the interfaces on the CEs according to Figure 4-6. The configuration procedure is not mentioned here.

    After the configuration is complete, run the display ip vpn-instance verbose command on the PEs to check the configuration of IPv6 VPN instances.

  4. Establish EBGP peer relationships between the Spoke-PEs and Spoke-CEs and import VPN routes.

    # Configure Spoke-CE1.

    <HUAWEI> system-view
    [HUAWEI] sysname Spoke-CE1
    [Spoke-CE1] bgp 65410
    [Spoke-CE1-bgp] router-id 10.10.10.10
    [Spoke-CE1-bgp] peer 2001::2 as-number 100
    [Spoke-CE1-bgp] ipv6-family unicast
    [Spoke-CE1-bgp-af-ipv6] peer 2001::2 enable
    [Spoke-CE1-bgp-af-ipv6] import-route direct
    [Spoke-CE1-bgp-af-ipv6] quit
    [Spoke-CE1-bgp] quit

    # Configure Spoke-PE1.

    [Spoke-PE1] bgp 100
    [Spoke-PE1-bgp] ipv6-family vpn-instance vpna
    [Spoke-PE1-bgp6-vpna] peer 2001::1 as-number 65410
    [Spoke-PE1-bgp6-vpna] import-route direct
    [Spoke-PE1-bgp6-vpna] quit
    [Spoke-PE1-bgp] quit

    # Configure Spoke-CE2.

    <HUAWEI> system-view
    [HUAWEI] sysname Spoke-CE2
    [Spoke-CE2] bgp 65420
    [Spoke-CE2-bgp] router-id 20.20.20.20
    [Spoke-CE2-bgp] peer 2002::2 as-number 100
    [Spoke-CE2-bgp] ipv6-family unicast
    [Spoke-CE2-bgp-af-ipv6] peer 2002::2 enable
    [Spoke-CE2-bgp-af-ipv6] import-route direct
    [Spoke-CE2-bgp-af-ipv6] quit
    [Spoke-CE2-bgp] quit

    #Configure Spoke-PE2.

    [Spoke-PE2] bgp 100
    [Spoke-PE2-bgp] ipv6-family vpn-instance vpna
    [Spoke-PE2-bgp6-vpna] peer 2002::1 as-number 65420
    [Spoke-PE2-bgp6-vpna] import-route direct
    [Spoke-PE2-bgp6-vpna] quit
    [Spoke-PE2-bgp] quit

    After the configuration is complete, run the display bgp vpnv6 all peer command on the PEs. The command output shows that the BGP peer relationships have been established between the PEs and CEs and are in Established state. Each PE can ping its connected CE.

    NOTE:

    If multiple interfaces on a PE are bound to the same VPN, you must specify the source IPv6 address when you run the ping ipv6 vpn-instance command to ping the CE connected to the peer PE. That is, specify -a source-ipv6-address in the ping ipv6 vpn-instance vpn-instance-name -a source-ipv6-address dest-ipv6-address command. Otherwise, the ping operation may fail.

  5. Configure the default route on the Hub-PE and Hub-CE.

    # Configure the Hub-CE.

    <HUAWEI> system-view
    [HUAWEI] sysname Hub-CE
    [Hub-CE] ipv6 route-static :: 0 2003::2

    # Configure the Hub-PE.

    # Configure the default route for vpn_out. Set the next hop of the default route to the address of the Hub-CE.

    [Hub-PE] ipv6 route-static vpn-instance vpn_out :: 0 2004::1

    # Advertise the default route using MP-IBGP.

    [Hub-PE] bgp 100
    [Hub-PE-bgp] ipv6-family vpn-instance vpn_out
    [Hub-PE-bgp6-vpn_out] network :: 0

    # Advertise the default route using MP-IBGP.

    [Hub-PE-bgp6-vpn_out] import-route direct
    [Hub-PE-bgp6-vpn_out] quit
    [Hub-PE-bgp] quit

  6. Establish MP-IBGP peer relationships between PEs.

    NOTE:

    The Spoke-PEs do not need to allow the repeated AS number, because the switch does not check the AS_Path attribute in the routing information advertised by the IBGP peers.

    # Configure Spoke-PE1.

    [Spoke-PE1] bgp 100
    [Spoke-PE1-bgp] peer 2.2.2.9 as-number 100
    [Spoke-PE1-bgp] peer 2.2.2.9 connect-interface loopback 1
    [Spoke-PE1-bgp] ipv6-family vpnv6
    [Spoke-PE1-bgp-af-vpnv6] peer 2.2.2.9 enable
    [Spoke-PE1-bgp-af-vpnv6] quit

    #Configure Spoke-PE2.

    [Spoke-PE2] bgp 100
    [Spoke-PE2-bgp] peer 2.2.2.9 as-number 100
    [Spoke-PE2-bgp] peer 2.2.2.9 connect-interface loopback 1
    [Spoke-PE2-bgp] ipv6-family vpnv6
    [Spoke-PE2-bgp-af-vpnv6] peer 2.2.2.9 enable
    [Spoke-PE2-bgp-af-vpnv6] quit

    # Configure the Hub-PE.

    [Hub-PE] bgp 100
    [Hub-PE-bgp] peer 1.1.1.9 as-number 100
    [Hub-PE-bgp] peer 1.1.1.9 connect-interface loopback 1
    [Hub-PE-bgp] peer 3.3.3.9 as-number 100
    [Hub-PE-bgp] peer 3.3.3.9 connect-interface loopback 1
    [Hub-PE-bgp] ipv6-family vpnv6
    [Hub-PE-bgp-af-vpnv6] peer 1.1.1.9 enable
    [Hub-PE-bgp-af-vpnv6] peer 3.3.3.9 enable
    [Hub-PE-bgp-af-vpnv6] quit

    After the configuration is complete, run the display bgp vpnv6 all peer command on the PEs. The command output shows that MP-IBGP peer relationships have been established and are in Established state.

  7. Verify the configuration.

    After the configuration is complete, check the BGP IPv6 VPN routes on the Spoke-PEs. You can see that the default route of vpn_out on the Hub-PE is advertised to each Spoke-PE.

    [Spoke-PE1] display bgp vpnv6 all routing-table
    
    
    BGP Local router ID is 1.1.1.9
     Status codes: * - valid, > - best, d - damped,
                   h - history,  i - internal, s - suppressed, S - Stale
                   Origin : i - IGP, e - EGP, ? - incomplete
    
    
     Total number of routes from all PE: 4
     Route Distinguisher: 100:1
    
    
     *>  Network  : 2001::                                   PrefixLen : 64
         NextHop  : ::                                       LocPrf    :
         MED      : 0                                        PrefVal   : 0
         Label    : NULL
         Path/Ogn : ?
     *
         NextHop  : 2001::1                                  LocPrf    :
         MED      : 0                                        PrefVal   : 0
         Label    : NULL
         Path/Ogn : 65410 ?
    
     Route Distinguisher: 100:22
    
    
     *>i Network  : ::                                       PrefixLen : 0
         NextHop  : ::FFFF:2.2.2.9                           LocPrf    : 100
         MED      : 0                                        PrefVal   : 0
         Label    : 105473
         Path/Ogn : i
     *>i Network  : 2004::                                   PrefixLen : 64
         NextHop  : ::FFFF:2.2.2.9                           LocPrf    : 100
         MED      : 0                                        PrefVal   : 0
         Label    : 105472
         Path/Ogn : ?
    
     VPN-Instance vpna :
    
     Total Number of Routes: 4  
     *>i Network  : ::                                       PrefixLen : 0
         NextHop  : ::FFFF:2.2.2.9                           LocPrf    : 100
         MED      : 0                                        PrefVal   : 0
         Label    : 105473
         Path/Ogn : i
     *>  Network  : 2001::                                   PrefixLen : 64
         NextHop  : ::                                       LocPrf    :
         MED      : 0                                        PrefVal   : 0
         Label    : NULL
         Path/Ogn : ?
     *
         NextHop  : 2001::1                                  LocPrf    :
         MED      : 0                                        PrefVal   : 0
         Label    : NULL
         Path/Ogn : 65410 ?
     *>i Network  : 2004::                                   PrefixLen : 64
         NextHop  : ::FFFF:2.2.2.9                           LocPrf    : 100
         MED      : 0                                        PrefVal   : 0
         Label    : 105472
         Path/Ogn : ?

    The Spoke-CEs can ping each other. Run the tracert command on the Spoke-CEs, and you can see that the traffic between the Spoke-CEs is forwarded through the Hub-CE.

    [Spoke-CE1] ping ipv6 2002::1
      PING 2002::1 : 56  data bytes, press CTRL_C to break
        Reply from 2002::1
        bytes=56 Sequence=1 hop limit=59  time = 187 ms
        Reply from 2002::1
        bytes=56 Sequence=2 hop limit=59  time = 187 ms
        Reply from 2002::1
        bytes=56 Sequence=3 hop limit=59  time = 187 ms
        Reply from 2002::1
        bytes=56 Sequence=4 hop limit=59  time = 187 ms
        Reply from 2002::1
        bytes=56 Sequence=5 hop limit=59  time = 187 ms
      --- 2002::1 ping statistics ---
        5 packet(s) transmitted
        5 packet(s) received
        0.00% packet loss
        round-trip min/avg/max = 187/187/187 ms
    
    [Spoke-CE1] tracert ipv6 2002::1
    traceroute to 2002::1  30 hops max,60 bytes packet
     1 2001::2 16 ms  31 ms  16 ms
     2 2004::2 78 ms  62 ms  63 ms
     3 2004::1 62 ms  63 ms  62 ms
     4 2003::2 63 ms  62 ms  63 ms
     5 2002::2 109 ms  94 ms  109 ms
     6 2002::1 125 ms  141 ms  125 ms

    Run the display bgp ipv6 routing-table command on a Spoke-CE, and you can see the default route advertised by BGP on the peer Spoke-PE. Run the display ipv6 routing-table command, and you can see the default route whose next hop is the peer Spoke-PE.

    [Spoke-CE1] display bgp ipv6 routing-table
    
    
    Total Number of Routes: 4
    
     BGP Local router ID is 10.10.10.10
     Status codes: * - valid, > - best, d - damped,
                   h - history,  i - internal, s - suppressed, S - Stale
                   Origin : i - IGP, e - EGP, ? - incomplete
    
     *>  Network  : ::                                       PrefixLen : 0
         NextHop  : 2001::2                                  LocPrf    :
         MED      :                                          PrefVal   : 0
         Label    :
         Path/Ogn : 100  i
     *>  Network  : 2001::                                   PrefixLen : 64
         NextHop  : ::                                       LocPrf    :
         MED      : 0                                        PrefVal   : 0
         Label    :
         Path/Ogn : ?
     *
         NextHop  : 2001::2                                  LocPrf    :
         MED      : 0                                        PrefVal   : 0
         Label    :
         Path/Ogn : 100  ?
     *>  Network  : 2004::                                   PrefixLen : 64
         NextHop  : 2001::2                                  LocPrf    :
         MED      :                                          PrefVal   : 0
         Label    :
         Path/Ogn : 100  ? 
    [Spoke-CE1] display ipv6 routing-table
    Routing Table : Public
             Destinations : 5        Routes : 5
    
     Destination  : ::                              PrefixLength : 0
     NextHop      : 2001::2                         Preference   : 255
     Cost         : 0                               Protocol     : BGP
     RelayNextHop : ::                              TunnelID     : 0x0
     Interface    : Vlanif50                        Flags        : D
    
     Destination  : ::1                             PrefixLength : 128
     NextHop      : ::1                             Preference   : 0
     Cost         : 0                               Protocol     : Direct
     RelayNextHop : ::                              TunnelID     : 0x0
     Interface    : InLoopBack0                     Flags        : D
    
     Destination  : 2001::                          PrefixLength : 64
     NextHop      : 2001::1                         Preference   : 0
     Cost         : 0                               Protocol     : Direct
     RelayNextHop : ::                              TunnelID     : 0x0
     Interface    : Vlanif50                        Flags        : D
    
     Destination  : 2001::1                         PrefixLength : 128
     NextHop      : ::1                             Preference   : 0
     Cost         : 0                               Protocol     : Direct
     RelayNextHop : ::                              TunnelID     : 0x0
     Interface    : Vlanif50                        Flags        : D
    
     Destination  : 2004::                          PrefixLength : 64
     NextHop      : 2001::2                         Preference   : 255
     Cost         : 0                               Protocol     : BGP
     RelayNextHop : ::                              TunnelID     : 0x0
     Interface    : Vlanif50                        Flags        : D
    

Configuration Files

  • Spoke-CE1 configuration file

    #
     sysname Spoke-CE1
    #
     ipv6
    #
     vlan batch 50
    #
    interface Vlanif50
     ipv6 enable
     ipv6 address 2001::1/64
    #
    interface GigabitEthernet1/0/0
     port link-type trunk
     port trunk allow-pass vlan 50
    #
    bgp 65410
     router-id 10.10.10.10
     peer 2001::2 as-number 100
     #
     ipv6-family unicast
      undo synchronization
      import-route direct
      peer 2001::2 enable
    #
    return
  • Spoke-PE1 configuration file

    #
     sysname Spoke-PE1
    #
     ipv6
    #
     vlan batch 10 50
    #
    ip vpn-instance vpna
     ipv6-family
      route-distinguisher 100:1
      vpn-target 100:1 export-extcommunity
      vpn-target 200:1 import-extcommunity
    #
    mpls lsr-id 1.1.1.9
    mpls
    #
    mpls ldp
    #
    interface vlanif10
     ip address 22.1.1.1 255.255.255.0
     mpls
     mpls ldp
    #
    interface Vlanif50
     ipv6 enable
     ip binding vpn-instance vpna
     ipv6 address 2001::2/64
    #
    interface GigabitEthernet1/0/0
     port link-type trunk
     port trunk allow-pass vlan 50
    #
    interface GigabitEthernet2/0/0
     port link-type trunk
     port trunk allow-pass vlan 10
    #
    interface LoopBack1
     ip address 1.1.1.9 255.255.255.255
    #
    bgp 100
     peer 2.2.2.9 as-number 100
     peer 2.2.2.9 connect-interface LoopBack1
     #
     ipv4-family unicast
      undo synchronization
      peer 2.2.2.9 enable
     #
     ipv6-family vpnv6
      policy vpn-target
      peer 2.2.2.9 enable
     #
     ipv6-family vpn-instance vpna
      peer 2001::1 as-number 65410
      import-route direct
    #
    ospf 1
     area 0.0.0.0
      network 22.1.1.0 0.0.0.255
      network 1.1.1.9 0.0.0.0
    #
    return
  • Spoke-PE2 configuration file

    #
     sysname Spoke-PE2
    #
     ipv6
    #
     vlan batch 20 60
    #
    ip vpn-instance vpna
     ipv6-family
      route-distinguisher 100:3
      vpn-target 100:1 export-extcommunity
      vpn-target 200:1 import-extcommunity
    #
    mpls lsr-id 3.3.3.9
    mpls
    #
    mpls ldp
    #
    interface Vlanif20
     ip address 11.1.1.1 255.255.255.0
     mpls
     mpls ldp
    #
    interface Vlanif60
     ipv6 enable
     ip binding vpn-instance vpna
     ipv6 address 2002::2/64
    #
    interface GigabitEthernet1/0/0
     port link-type trunk
     port trunk allow-pass vlan 60
    #
    interface GigabitEthernet2/0/0
     port link-type trunk
     port trunk allow-pass vlan 20
    #
    interface LoopBack1
     ip address 3.3.3.9 255.255.255.255
    #
    bgp 100
     peer 2.2.2.9 as-number 100
     peer 2.2.2.9 connect-interface LoopBack1
     #
     ipv4-family unicast
      undo synchronization
      peer 2.2.2.9 enable
     #
     ipv6-family vpnv6
      policy vpn-target
      peer 2.2.2.9 enable
     #
     ipv6-family vpn-instance vpna
      peer 2002::1 as-number 65420
      import-route direct
    #
    ospf 1
     area 0.0.0.0
      network 3.3.3.9 0.0.0.0
      network 11.1.1.0 0.0.0.255
    #
    return
  • Spoke-CE2 configuration file

    #
     sysname Spoke-CE2
    #
     ipv6
    #
     vlan batch 60
    #
    interface Vlanif60
     ipv6 enable
     ipv6 address 2002::1/64
    #
    interface GigabitEthernet1/0/0
     port link-type trunk
     port trunk allow-pass vlan 60
    #
    bgp 65420
     router-id 20.20.20.20
     peer 2002::2 as-number 100
     #
     ipv6-family unicast
      undo synchronization
      import-route direct
      peer 2002::2 enable
    #
    return
  • Hub-CE configuration file

    #
     sysname Hub-CE
    #
     ipv6
    #
     vlan batch 30 40
    #
    interface Vlanif30
     ipv6 enable
     ipv6 address 2003::1/64
    #
    interface Vlanif40
     ipv6 enable
     ipv6 address 2004::1/64
    #
    interface GigabitEthernet1/0/0
     port link-type trunk
     port trunk allow-pass vlan 30
    #
    interface GigabitEthernet2/0/0
     port link-type trunk
     port trunk allow-pass vlan 40
    #
    ipv6 route-static :: 0 2003::2
    #
    return
  • Hub-PE configuration file

    #
     sysname Hub-PE
    #
     ipv6
    #
     vlan batch 10 20 30 40
    #
    ip vpn-instance vpn_in
     ipv6-family
      route-distinguisher 100:21
      vpn-target 100:1 import-extcommunity
    #
    ip vpn-instance vpn_out
     ipv6-family
      route-distinguisher 100:22
      vpn-target 200:1 export-extcommunity
    #
    mpls lsr-id 2.2.2.9
    mpls
    #
    mpls ldp
    #
    interface Vlanif10
     ip address 22.1.1.2 255.255.255.0
     mpls
     mpls ldp
    #
    interface Vlanif20
     ip address 11.1.1.2 255.255.255.0
     mpls
     mpls ldp
    #
    interface Vlanif30
     ipv6 enable
     ip binding vpn-instance vpn_in
     ipv6 address 2003::2/64
    #
    interface Vlanif40
     ipv6 enable
     ip binding vpn-instance vpn_out
     ipv6 address 2004::2/64
    #
    interface GigabitEthernet1/0/0
     port link-type trunk
     port trunk allow-pass vlan 10
    #
    interface GigabitEthernet2/0/0
     port link-type trunk
     port trunk allow-pass vlan 20
    #
    interface GigabitEthernet3/0/0
     port link-type trunk
     port trunk allow-pass vlan 30
    #
    interface GigabitEthernet3/0/1
     port link-type trunk
     port trunk allow-pass vlan 40
    #
    interface LoopBack1
     ip address 2.2.2.9 255.255.255.255
    #
    bgp 100
     peer 1.1.1.9 as-number 100
     peer 1.1.1.9 connect-interface LoopBack1
     peer 3.3.3.9 as-number 100
     peer 3.3.3.9 connect-interface LoopBack1
     #
     ipv4-family unicast
      undo synchronization
      peer 1.1.1.9 enable
      peer 3.3.3.9 enable
     #
     ipv6-family vpnv6
      policy vpn-target
      peer 1.1.1.9 enable
      peer 3.3.3.9 enable
     #
     ipv6-family vpn-instance vpn_out
      network :: 0
      import-route direct
    #
    ospf 1
     area 0.0.0.0
      network 2.2.2.9 0.0.0.0
      network 22.1.1.0 0.0.0.255
      network 11.1.1.0 0.0.0.255
    #
    ipv6 route-static vpn-instance vpn_out :: 0 2004::1
    #
    return
Translation
Download
Updated: 2019-04-08

Document ID: EDOC1100065751

Views: 39321

Downloads: 50

Average rating:
This Document Applies to these Products
Related Version
Related Documents
Share
Previous Next